Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Genes (Basel) ; 13(12)2022 12 13.
Article in English | MEDLINE | ID: covidwho-2163301

ABSTRACT

The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genome-Wide Association Study
2.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071654

ABSTRACT

Mycobacterium tuberculosis (Mtb), an acid-fast bacillus that causes Tuberculosis (TB), is a pathogen that caused 1.5 million deaths in 2020. As per WHO estimates, another 4.1 million people are suffering from latent TB, either asymptomatic or not diagnosed, and the frequency of drug resistance is increasing due to intrinsically linked factors from both host and bacterium. For instance, poor access to TB diagnosis and reduced treatment in the era of the COVID-19 pandemic has resulted in more TB deaths and an 18% reduction in newly diagnosed cases of TB. Additionally, the detection of Mtb isolates exhibiting resistance to multiple drugs (MDR, XDR, and TDR) has complicated the scenario in the pathogen's favour. Moreover, the conventional methods to detect drug resistance may miss mutations, making it challenging to decide on the treatment regimen. However, owing to collaborative initiatives, the last two decades have witnessed several advancements in both the detection methods and drug discovery against drug-resistant isolates. The majority of them belong to nucleic acid detection techniques. In this review, we highlight and summarize the molecular mechanism underlying drug resistance in Mtb, the recent advancements in resistance detection methods, and the newer drugs used against drug-resistant TB.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Nucleic Acids , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Pandemics , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/microbiology , Drug Resistance , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
3.
Molecules ; 27(16)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2023940

ABSTRACT

Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers' interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Delivery Systems , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
Molecules ; 27(13)2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1917639

ABSTRACT

The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL